NPS Calorimeter

ERR, May 15 (2019)

Carlos Munoz Camacho, IPN-Orsay for the NPS Collaboration

IPN-Orsay NPS group:

- > E. Rindel, T. Nguyen Trung, G. Hull, J. Bettane
- > C. Domingues, M. Imre, B. Mathon, L. Seminor, L. Vatrinet, B. Geoffroy
- > H. S. Ko, C. Munoz

Overview: conceptual design

Calorimeter frame:

ORSAY

- Crystals placed in a 0.5 mm-thick carbon frame to ensure good positioning
- PMTs accessible from the back side to allow maintenance
- Calibration and radiation curing with blue
 LED light though quartz optical fiber

Design 100% completed

30x36 (1080) PbWO₄ crystals (2x2x20 cm³)

- Hamamatsu R4125 PMTs JLAB, YEREVAN
- Custom-made active bases OHIO, YEREVAN

Survey & alignment requirements: ~1mm

JLAB,

CUA

Crystals status

Vendor	Samples	Delivered	Experimental investigation	CRYTUR	SICCAS
SICCAS 4	460	FY 2017	Visual inspections including 5mW green laser	100%	100%
			Dimension measurements	100%	100%
CRYTUR	100	FY 2018	Transmittance measurements	100%	100%
			Light yield measurements	100%	70%
			Radiation resistance, sample of 10 pieces	to be done	done
			Beam tests (additional)	to be discussed	done; data analysis ongoing
			Chemical and surface analysis few samples (optional)	done	done

Quality analysis:

Crystals status

Crystal procurement:

SICCAS: 460 (2017-18) onsite	CRYTUR: 100 (2018) onsite 250 (ordered 2019) 300 (ordered 2019 - replacing an order to SICCAS) ======= 650
	650

All crystals will be onsite by Summer 2020

PMT and voltage dividers

> PMT (Hamamatsu R4125):

340 onsite, 1000 more ordered (delivery by Summer 2019)

Voltage dividers:

80% of them (865) assembled. Completion expected by Summer 2019

Voltage dividers tested in the Hall D ComCal prototype:

10 GeV : FADC range: Typical HV:

3200 FADC channels 2 V (maximum range) 700 - 750 V ⁵

Linearity of the FADC peak amplitude

• Some non-linearities on the level of 2 - 3 % were observed for the original PMT base

(PMT was operated at relatively small HV, recommended HV is about 1 kV)

- The linearity can be improved by reducing the amplifier gain and increasing HV: change of 1 resistor in the base needed
- Anode current will be evaluated and gain adjusted as needed

Energy resolution of prototype

More details can be found in GlueX-doc-3590, GlueX-doc-3998, V. Berdnikov, A.Somov, J. Crafts

Calorimeter carbon frame

2-cm of C (0.5 mm thick) at the front and back of the crystals

Carbon frame: impact on energy resolution & efficiency

Energy resolution in PbWO₂ calorimeter

No Gap, 10GeV electron

1mm Air Gap, 10GeV electron

400

1mm Carbon Gap, 10GeV electron 1.2% (ideal case) to 1.6% at 10 GeV mean : 1.00e+01 ± 2.37e-03 GeV ٠ 350 ~1.15% (FWHM/E) FWHM : 0.115 GeV with 1mm of air between crystals mean : 9.97e+00 ± 2.03e-03 GeV 300 ~1.64% FWHM : 0.164 GeV More than 97% of energy collected after 22 X_0 ٠ mean : 9.86e+00 ± 3.13e-03 GeV 250 FWHM : 0.263 GeV ~2.67% 200 mean values are from gaus fit. 150 100 50 10.2 8.8 9.8 10 9.6 Energy [GeV] Cumulated energy deposition in PbWO Calorimeter Longitudinal energy deposition in PbWO, calorimeter <u>1 dE</u> [%] EdX₀ Energy deposition [%] 100 Vo gap, 10GeV mm air gap. 10GeV 1mm carbon gap, 10GeV 60 40 No gap, 10GeV 20 1mm air gap, 10GeV 1mm carbon gap, 10GeV 10 9 22 2 10 12 20 24 10 12 16 18 20 22 14 16 18 6 8 14 24 X,

Carbon frame: mechanical simulations and tests

Very resistant structure

Real tests on the bench ongoing:

Simulations:

Effect of 1 crystal in each cell

- Less than 0.2 µm deformation at the center
- 0.4 µm deformation
 on external layer

Cables and fibers

PCB design (HV, signal, LED)

Calibration and curing

1 blue LED per channel (onto the PCB board)

- Pulsed mode for calibration
- Continuous mode for curing
- Light through 800 μ m diameter silicate fiber (radiation hard)

TO DO: LED control board (JLAB)

Radiation environment

Geant4 simulation, cross-checked with RadCon estimates

Irradiation and curing tests

J43

Irradiation and curing tests

Full scale mock-up of NPS frame

Cable lengths defined:

- > 32 cm PMT->PCB (HV+signal)
- Signal PCB-> top of box: 0.5-1.5 m

Full scale mock-up of NPS frame

Temperature zones

Temperature control: back side

Temperature control: crystals

Summary

- ✓ NPS calorimeter construction in progress:
 - $_{\odot}~$ All crystals and PMT/bases will be onsite by Summer 2020
 - Calorimeter frame components will be shipped (from Orsay) early 2020
 - Assembly (+tests) at JLab can start from September 2020
- ✓ No show-stoppers anticipated

Back-up

Beam Test of the Calorimeter Prototype

Installed in the experimental Hall D. Used to detect Compton events in the PrimEx D experiment

- successfully operated during PrimEx D production run in the Spring of 2019
- > Array of 12x12 PbWO₄ crystals
- > Beam hole: 2 x 2 crystals
- Tungsten absorber covers the inner most layer (taken from HyCal)
- Water cooling (minimum 5° C), nitrogen purge
- > LED-based gain monitoring system
- Positioned on X-Y movable platform

Calibration

- Move each calorimeter module to the photon beam
 - Calibration runs at small luminosity (rate in the module 30 kHz at 30 MeV threshold)
- Use beam energy provided by the Hall D tagger counters to equalize gains

FADC amplitude as a function of the beam energy

10 GeV :	3200 FADC channels
FADC range:	2 V (maximum range)
Typical HV:	700 - 750 V

Linearity

 Some non-linearities on the level of 2 – 3 % in the calorimeter response were observed for the original PMT base for both the peak amplitude and pulse integral

- PMT was operated at relatively small HV, recommended HV is about 1 kV

• The linearity can be improved by reducing the amplifier gain and increasing HV. Some tuning of the PMT base may be required

Energy Resolution

This plot will be updated

Relatively good energy resolution, which is consistent with the resolution of the Hall B HyCal calorimeter (which was constructed using SICCAS crystals)

> More details can be found in GlueX-doc-3590, GlueX-doc-3998, V. Berdnikov, A.Somov, J. Crafts

